Disclaimer

The information in this presentation is provided solely for information purposes, and is not a commitment, promise or legal obligation to deliver any products, features and/or functionalities, and should not be relied upon in making purchasing decisions. The development, release and timing of any products, features and/or functionalities described remains at the sole discretion of Telrad. If and when any products, features and/or functionalities are offered for sale by Telrad, they will be sold under agreed upon terms and conditions. This information may not be incorporated into any contractual agreement with Telrad or its subsidiaries or affiliates. Telrad makes no representations or warranties with respect to the contents of this presentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.

Copyright 2013 Telrad NETWORKS LTD. All rights reserved. Telrad®, its logo and certain names, product and service names referenced herein may be either registered trademarks, trademarks, trade names or service marks of Telrad Ltd in certain jurisdictions. All other names are or may be the trademarks of their respective owners. The content herein is subject to change without further notice.
Agenda

• Introduction
 ▶ Market Dynamics
 ▶ Transition Solution in Glance
 ▶ Installed Base & Upgrade Options

• Detailed scenarios for transition path to TD-LTE
 ▶ Before start: initial conditions & options for transition
 ▶ From WiMAX 802.16d (e-ready)
 ▪ BreezeMAX FDD & TDD
 ▶ From WiMAX 802.16e
 ▪ 4Motion BreezeMAX
 ▪ BreezeCOMPACT

• Common recommendations for transition process readiness
Introduction
Our Target

• To enable TD-LTE upgrade path for our large BWA installed base
 ▹ More than 200 Operators last 10 years
 ▹ About million CPEs

• Leveraging our well-designed BreezeMAX & BreezeCOMPACT solution
 ▹ Investment Protection: Lowering OPEX and CAPEX during the transition
 ▹ Minimizing service interruption
 ▹ Enabling better network performance
 ▹ Opening to wider End Device market
Market Dynamics for Transition Path

- **What is BWA?**
 - Established by WiMAX industry
 - Solution for fixed & nomadic service, *Mobility Less Significant*
 - Targeting data-centric, W-DSL, private & governmental networks
 - Focusing on QoS, IP & LAN services, simple & scalable

- **Identify Yourself**
 - GREEN or BLUE path
Market Dynamics for Transition Path

- **What is BWA?**
 - Established by WiMAX industry
 - Solution for fixed & nomadic service, *Mobility Less Significant*
 - Targeting data-centric, W-DSL, private & governmental networks
 - Focusing on QoS, IP & LAN services, simple & scalable

- **Identify Yourself**
 - **GREEN** or **BLUE** path

- 3GPP defines mobile scenario of LTE *for cellular market only*
 - *Mobility & Roaming, Integration with 2G/3G networks, Cellular regulatory req’ts.*

- Need U/SIM CARD? – 3GPP no other option

- Transparent IP Services, Layer 2 (Eth.) services, SIP voice w/ QoS? *3GPP doesn’t support*

- **Other standards bodies taking control over BWA market transition?**
 - **GTI - TDD Spectrum Operators group**, promoting TD-LTE as a global mobile service (mostly 2.xGHz holders)
 - **WiMAX Forum** – By end 2012 approved Rel.2.x Roadmap --> TD-LTE for WiMAX transition
What is BWA?
- Established by WiMAX industry
- Solution for fixed & nomadic service, Mobility Less Significant
- Targeting data-centric, W-DSL, private & governmental networks
- Focusing on QoS, IP & LAN services, simple & scalable

Identify Yourself
- [GREEN] or [BLUE] path

3GPP defines mobile scenario of LTE for cellular market only
Mobility & Roaming, Integration with 2G/3G networks, Cellular regulatory req’ts.

Need U/SIM CARD? – 3GPP no other option

Transparent IP Services, Layer 2 (Eth.) services, SIP voice w/ QoS? 3GPP doesn’t support

Other standards bodies taking control over BWA market transition?
- GTI - TDD Spectrum Operators group, promoting TD-LTE as a global mobile service (mostly 2.xGHz holders)
- WiMAX Forum – By end 2012 approved Rel.2.x Roadmap --> TD-LTE for WiMAX transition

2G, 3G & WIMAX MOBILE

FD & TD-LTE Rev 9/10 MOBILE

WIMAX Rel 1.x BWA

WIMAX Rel 2.x (TD-LTE)
Our Networks – Commitment to upgrade path

- Telrad is the only vendor with proved upgrade solution and field experience
- Our commitment is result of our solution design and R&D know-how including complete control over all system elements
Telrad Multi-Technology Approach

No Transition

Coexistence

Multi - Technology SDR

WiMAX

WiMAX

LTE

LTE Advanced

EPC Integral & Mini-Centralized

ASN GW

BreezeCOMPACT – The Only Real SDR solution for 4G transition
Telrad 4Motion WiMAX to TD-LTE Solution

At a Glance

- **WiMAX CPE** on WiMAX carrier
- **LTE CPE** on LTE carrier
- **Dual Mode CPE** on WiMAX or LTE carrier

End User Devices

RAN (BS Site)
- Site upgrade and HW extension for LTE support
- RRH and antenna reuse
- Ground level upgrade
- Single BH connectivity

Core & Backbone
- **EPC & ASN GW** enabling common network topology: distributed or mini-centralized
- **Common AAA** for WiMAX & LTE
- Minimal **IP backbone** reconfiguration
In-Band or Overlay Upgrade

What is Your reality?

- **In-Band Upgrade**
 - Utilize same band resources
 - Required multi-technologies CPE support

- **Overlay Upgrade**
 - Extra band resources required till complete CPE replacement
 - Required two technology coexistence solution in transition period
All Our Networks are Upgradable

<table>
<thead>
<tr>
<th>Existing Platform</th>
<th>WIMAX 802.16d</th>
<th>WiMAX 802.16e</th>
<th>TD-LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.16d (e-ready) FDD or TDD deployment</td>
<td>ODU BreezeMax FDD & TDD</td>
<td>In-Band upgrade</td>
<td>BreezeCOMPACT</td>
</tr>
<tr>
<td></td>
<td>CPE1000 (RD2 – FDD/TDD/16e)</td>
<td>4Motion BreezeMAX*</td>
<td>overlay upgrade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPE1000</td>
<td>BreezeCOMPACT Dual Mode /TD-LTE CPE</td>
</tr>
<tr>
<td>802.16e deployment</td>
<td>4Motion ODU</td>
<td>16e / Dual Mode (WiMAX&TD-LTE)</td>
<td>4Motion ODU + 4Motion LTE IDU</td>
</tr>
<tr>
<td></td>
<td>4Motion IDU</td>
<td>overlay upgrade</td>
<td>overlay upgrade</td>
</tr>
<tr>
<td>New BWA deployment this year</td>
<td>+ Dual Mode (WiMAX&TD-LTE)</td>
<td>In-Band upgrade</td>
<td>+ Dual Mode (WiMAX&TD-LTE)</td>
</tr>
</tbody>
</table>
Detailed Scenarios: Transition Path to TD-LTE
Initial conditions for the upgrade

Does Your Network Require Overlay?
- **No, We have correct CPEs in the network**
- **YES, Extra spectrum is required for transition**

What the Minimum Extra Spectrum Does My Network Need for the Overlay?
- Depends on initial deployment

Should the Overlay Spectrum be adjacent?
- **No, Telrad Solution is not limited**

RAN Topology

<table>
<thead>
<tr>
<th></th>
<th>3-Sector</th>
<th>4-Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Deployment</td>
<td>10MHz, Reuse 3</td>
<td>10MHz, Reuse 2</td>
</tr>
<tr>
<td>Minimum Overlay</td>
<td>5MHz, Reuse 3</td>
<td>5MHz Reuse 2</td>
</tr>
<tr>
<td>Total Min Spectrum*</td>
<td>45 MHz</td>
<td>30MHz</td>
</tr>
</tbody>
</table>

* Generic statement, should be analyzed per specific network
BreezeMAX FDD/TDD transition

- **TDD or FDD**
- **ODU 1x1**
- **CPE1000**
- **BreezeMax**
- **IP Backbone**

- **WiMAX 16e TDD**
- **CPE1000**
- **WiMAX 16e CPE**
- **BS Upgrade**

- **COMPACT**
- **Dual Mode CPE Upgrade**
- **BS Upgrade**

- **WiMAX & TD-LTE**
- **COMPACT**
- **IP Backbone**
BreezeMAX TDD (e-ready) transition
4Motion BreezeMAX upgrade
In-band Scenario

<table>
<thead>
<tr>
<th>Element</th>
<th>Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>Reused</td>
</tr>
<tr>
<td>ODU</td>
<td>Reused</td>
</tr>
<tr>
<td>IF cabling</td>
<td>Reused</td>
</tr>
<tr>
<td>BMAX IDU</td>
<td>Replaced</td>
</tr>
<tr>
<td>Int. ASN GW</td>
<td>Replaced</td>
</tr>
<tr>
<td>GPS</td>
<td>Reused</td>
</tr>
<tr>
<td>4M LTE IDU</td>
<td>New</td>
</tr>
</tbody>
</table>
4Motion BreezeMAX upgrade Overlay Scenario

<table>
<thead>
<tr>
<th>Element</th>
<th>Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>Reused</td>
</tr>
<tr>
<td>ODU</td>
<td>Reused</td>
</tr>
<tr>
<td>IF cabling</td>
<td>Reused</td>
</tr>
<tr>
<td>BMAX IDU</td>
<td>Reused</td>
</tr>
<tr>
<td>Int. ASN GW</td>
<td>Reused</td>
</tr>
<tr>
<td>GPS</td>
<td>Reused</td>
</tr>
<tr>
<td>4M LTE IDU</td>
<td>New</td>
</tr>
</tbody>
</table>
4Motion ODU Upgrade Zoom-In

<table>
<thead>
<tr>
<th>ODU Type</th>
<th>Overlay</th>
<th>In-band</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2</td>
<td>Add ODU 2x2 Add 2 IF cables</td>
<td>No New HW</td>
</tr>
<tr>
<td>2x4</td>
<td>Add ODU 2x2</td>
<td>No New HW</td>
</tr>
<tr>
<td>4x4 (2*2x2)</td>
<td>No New HW</td>
<td>No New HW</td>
</tr>
</tbody>
</table>

WIMAX ONLY

WIMAX + LTE (Overlay)

LTE ONLY (In-band)
BreezeCOMPACT upgrade In-Band Scenario

- WiMAX CPE
- IP Backbone
- WiMAX 16e CPEs
- WiMAX 16e
 - Dual Mode (WiMAX&TD-LTE)
- COMPACT
- BS Upgrade
- Dual Mode CPE Upgrade
- LTE
- 16e / Dual Mode (WiMAX&TD-LTE)
- IP Backbone

16e / Dual Mode (WiMAX&TD-LTE)
BreezeCOMPACT Upgrade Overlay

WiMAX 16e TDD

16e / Dual Mode (WiMAX&TD-LTE)

RF

S1

S2

WiMAX 16e TDD

LTE Upgrade

16e / Dual Mode (WiMAX&TD-LTE)

RF

S1

S2

WiMAX & TD-LTE

16e / Dual Mode (WiMAX&TD-LTE)

RF

S1

S2

WiMAX 16e CPEs

WiMAX

IP Backbone

WiMAX 16e CPEs

IP Backbone
Why is it preferred making SPLIT vs. RADIO COMBINING?

<table>
<thead>
<tr>
<th></th>
<th>RADIO SPLIT</th>
<th>RADIO COMBINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiMAX & LTE Channels</td>
<td>No limitation</td>
<td>Adjacent</td>
</tr>
<tr>
<td>Diversity</td>
<td>Complete independency</td>
<td>May loose 1-2db</td>
</tr>
<tr>
<td>CORE connectivity</td>
<td>Straight Forward</td>
<td>Complicated</td>
</tr>
<tr>
<td>topology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WIMAX ONLY

OVERLAY Ready

WIMAX + LTE

(Overlay)
Steps for successful transition

• Consider your network transition in early stage
• CPEs
 ▶ Prefer using dual mode / upgradable CPEs
 – minimize or avoid NETWORK OVERLAY investment
• RNP
 ▶ For OVERLAY plan considering extra dB for the transition stage
 – avoid costly restructuring of the network
• Site structuring
 ▶ Build your site to avoid the need for additional climb and reinstallation during the transition
• Map your end users services and plan for post-transition operation
• Consider your transport topology
 ▶ Telrad LTE CORE solution uses similar topologies as in WIMAX
 – Distributed (Integrated) and Mini-Centralized EPC

Telrad proposes case-by-case advising and planning services for Radio & Networking
Thank You...